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1 Project Abstract 
 

Project Title: A New Methodology for Early Anomaly Detection of BWR Instabilities 
 
Participant: Kostadin Ivanov, The Pennsylvania State University, (814) 865-0040, kni1@psu.edu 

 
 

The objective of the performed research is to develop an early anomaly detection methodology so as to 
enhance safety, availability, and operational flexibility of Boiling Water Reactor (BWR) nuclear power 
plants. The technical approach relies on suppression of potential power oscillations in BWRs by detecting 
small anomalies at an early stage and taking appropriate prognostic actions based on an anticipated 
operation schedule. 
 
The research utilizes a model of coupled (two-phase) thermal-hydraulic and neutron flux dynamics, which 
is used as a generator of time series data for anomaly detection at an early stage. The model captures 
critical nonlinear features of coupled thermal-hydraulic and nuclear reactor dynamics and (slow time-
scale) evolution of the anomalies as non-stationary parameters. The time series data derived from this 
nonlinear non-stationary model serves as the source of information for generating the symbolic dynamics 
for characterization of model parameter changes that quantitatively represent small anomalies. The major 
focus during the 1st year research activity was on developing algorithms of pattern recognition for power 
instability based on anomaly detection from time series data, which later can be used to formulate real-
time decision and control algorithms for suppression of power oscillations for a variety of anticipated 
operating conditions. 
 
The research being performed in the framework of this project is essential to make signif icant 
improvement in the capability of thermal instability analyses for enhancing safety, availability, and 
operational flexibility of currently operating and next generation BWRs.   
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3 DESCRIPTION OF PERFORMED WORK 
 
3.1  Objectives 
 

 The objective of this research, which is supported by the US Department of Energy under the NEER 
program, is to develop an early anomaly detection methodology in order to enhance safety, availability, 
and operational flexibility of Boiling Water Reactor (BWR) nuclear power plants. The technical approach 
relies on suppression of potential power oscillations in BWRs by detecting small anomalies at an early 
stage and taking appropriate prognostic actions based on an anticipated operation schedule. 
 

The model of coupled (two-phase) thermal-hydraulic and neutron flux dynamics, based on the US 
NRC coupled code TRACE/PARCS1,2, is being used as a generator of time series data for anomaly 
detection at an early stage. The model captures critical nonlinear features of coupled thermal-hydraulic 
and nuclear reactor dynamics and (slow time-scale) evolution of the anomalies as non-stationary 
parameters. The time series data derived from this nonlinear non-stationary model serves as the source of 
information for generating the symbolic dynamics for characterization of model parameter changes that 
quantitatively represent small anomalies. This information is then used to develop algorithms of pattern 
recognition for power instability based on anomaly detection from time series data and to formulate real-
time decision and control algorithms for suppression of power oscillations for a variety of anticipated 
operating conditions.  
 

3.2 Development of Anomaly Detection Methodology 
 

The performed work during the first year of the project, which is described in this paper, focused on 
the construction of proposed anomaly detection methodology3. The concept is based on the fact that 
nonlinear systems show bifurcation, which is a change in the qualitative behavior as the system 
parameters vary. Some of these parameters may change on their own accord and account for the anomaly, 
while certain parameters can be altered in a controlled fashion.  
 
 The non-linear, non-autonomous BWR system model considered in this research exhibits phenomena 
at two time scales. Anomalies occur at the slow time scale while the observation of the dynamical 
behavior, based on which inferences are made, takes place at the fast time scale. It is assumed that: (i) the 
system behavior is stationary at the fast time scale; and (ii) any observable non-stationary behavior is 
associated with parametric changes evolving at the slow time scale. The goal is to make inferences about 
evolving anomalies based on the asymptotic behavior derived from the computer simulation. However, 
only sufficient changes in the slowly varying parameter may lead to detectable difference in the 
asymptotic behavior. The need to detect such small changes in parameters and hence early detection of an 
anomaly motivates the utilized stimulus-response approach. In this approach, the model of a BWR system 
is perturbed with an appropriate known input excitation to observe the asymptotic behavior at the fast 
time scale. A set of suitable input excitation parameters or stimuli are employed and the separate response 
of the BWR system to each of these stimuli is determined. As a result of the combination of the input 
stimulus and perturbed parameter(s), it is possible to observe a detectable change in the nature of 
asymptotic behavior that would otherwise remain unperceivable over a long period of time.   
 
 The developed anomaly detection methodology is built upon the concepts of Symbolic Dynamics, 
Finite State Automata , and Pattern Recognition to qualitatively describe the dynamical behavior in terms 
of symbol sequences at the fast-time scale 4. Appropriate phase space partitioning of the dynamical system 
yields an alphabet to obtain symbol sequences from time series data. To identify statistical patterns in 
these symbolic sequences, the tools of Computational Mechanics are used through construction of a 
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(probabilistic) finite-state machine from each symbol sequence. Transition probability matrices of the 
finite state machines, obtained from the symbol sequences, capture the pattern of the system behavior by 
information compression. A detectable change in the pattern represents a deviation of the nominal 
behavior from an anomalous one and suffices for anomaly detection. The state probability vectors derived 
from the respective connection (state transition) matrices under the nominal and an anomalous condition, 
yield a vector measure of the anomaly. This vector measure provides more information than a scalar 
measure such as the complexity measure. 
 
 In contrast to the e-machine that has an a priori unknown structure and yields optimal pattern 
discovery in the sense of mutual information, the state machine adopted here has an a priori known 
structure that can be freely chosen. Although this approach is suboptimal, it provides a common state 
machine structure where physical significance of each state is invariant under changes in the statistical 
patterns of symbol sequences. This feature allows unambiguous detection of possible anomalies from 
symbol sequences at different (slow-time) epochs. This fixed structure fixed-order Markov chain called 
the D-Markov machine is apparently computationally faster than the e-machine because of significantly 
fewer number of floating point arithmetic operations. These are the motivating factors for introducing the 
D-Markov machine. The machines described above recognize patterns in the behavior of a dynamical 
system that undergoes anomalous behavior. In order to quantify changes in the patterns that are 
representations of evolving anomalies, we induce an anomaly measure on these machines denoted by M. 
 
 The anomaly detection methodology is separated into two parts: 
  

i) Forward problem;  
ii) Inverse problem.  

 
 The first year activity described here has been concentrated on the forward problem to build a firm 
foundation for further development of the methodology. The objective in the forward problem is to learn 
how the grammar underlying the system dynamics changes as the system parameters change. In other 
words, the forward problem is that of learning where the value of a parameter is associated with an 
anomaly measure. The following steps are identified to solve the forward problem: 
 

1. Selection of appropriate Input Stimuli. 
 
2. Signal-noise separation, time interval selection, and phase-space construction. 
 
3. Choice of a phase space partitioning to generate Symbolic Dynamics. 
 
4. State Machine construction using generated symbol sequence(s) and determining the connection 

matrix. 
 
5. Selection of an appropriate metric for the anomaly measure M. 
 
6. Formulation and calibration of a (possibly non-parametric) relation between the computed anomaly 

measure and known physical anomaly under which the time series data were collected at different 
(slow-time) epochs.  
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3.2.1 Symbolic Dynamics and Encoding  
 

This section introduces the concept of Symbolic Dynamics and its usage for encoding nonlinear 
system dynamics from observed time series data. Let a continuously varying physical process be modeled 
as a finite-dimensional system in the setting of an initial value problem as: 

0
)( )0();),(( xxtxfdt

tdx == θ       (3.1)  

where ),0[ ∞∈t  is the time; nx ℜ∈  is the state vector in the phase space; and mℜ∈θ  is the (possibly 
slowly) varying parameter vector. The sole usage of the model in the Equation 3.1 may not always be 
feasible due to unknown parametric and non-parametric uncertainties and noise.  A convenient way of 
learning the dynamical behavior is to rely on the additional information provided by (sensor-based) time 
series data. 
 

A tool for behavior description of nonlinear dynamical systems is based on the concept of Formal 
Languages for transitions from smooth dynamics to a discrete symbolic description. The phase space of 
the dynamical system in the above equation is partitioned into a finite number of cells, so as to obtain a 

coordinate grid of the space. For simplicity, a compact (i.e., closed and bounded) region 
nR⊆Ω   

within which the motion is circumscribed is identified with the phase space itself. The encoding of Ω  is 

accomplished by introducing a },,{ 10 −≡ bBB LB  consisting of bn  mutually exclusive (i.e., 

∅=kj BB I , kj ≠∀ ) and exhaustive (i.e., Ω=
−

=
j

n

j
B

b 1

0
U ) cells. The dynamical system describes an 

orbit },,{ 10 LL nxxxO ≡ which passes through or touches the cells of the partition B . Let us denote 

the index of domain visited at the time instant i as the symbol Α∈is , where the set Α  of nb  distinct 

symbols that labels the partit ion elements is called the symbol alphabet. (Note: A symbol alphabet Α is 

called a generating partition of the phase space Ω  if a legal, i.e., physically admissible, symbol 
sequence uniquely determines a specific initial condition 0x , implying that the mapping from the phase 

space to the symbol space is bijective) Each initial state 0x in Ω  generates a sequence of symbols 
defined by a mapping from the phase space to the symbol space as: 
 

LLa nji sssx0          (3.2) 
   

The mapping in the Equation (3.2) is called Symbolic Dynamics as it attributes a legal symbol 
sequence to the system dynamics starting from an initial state. Although the theory of symbolic dynamics 
is well developed for one-dimensional mappings, very few results are known for two and higher 
dimensional systems. Recently, a technique for obtaining generating partition directly from the time series 
has been proposed by Kennel and Buhl. Figure 3.1 elucidates partitioning of a finite region of a phase 
space and a mapping from the partitioned space into the symbol alphabet, which becomes a representation 
of the system dynamics defined by the trajectories. It also shows the conversion of the symbol sequence 
into a finite state machine as explained in later sections. 
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Figure 3.1 Phase Space Partitioning 
 

Finding a partitioning is a difficult task especially if the time series data is noise-contaminated. 
Several methods of phase-space partitioning have been suggested in literature. Apparently, there exist no 
well-established procedure for phase-space partitioning and this is a subject of active research. 
 

We have used two approaches to find the partitioning needed to construct the symbol sequence. The 
first approach is the symbolic false nearest neighbors (SFNN) approach by Kennel and Buhl. The 
objective of this approach is to find a "generating" partition, where symbolic orbits uniquely identify one 
continuous space orbit, and thus the symbolic dynamics is fully equivalent to the continuous space 
dynamics. The method optimizes an essential property of a generating partition: avoiding topological 
degeneracies. The criterion is that short sequences of consecutive symbols ought to localize the 
corresponding state space point as well as possible. The central idea is to form a particular geometrical 
embedding of the symbolic sequence under the candidate partition and evaluate, and minimize, a 
statistics, which quantifies the apparent errors in localizing state space points. In a good partition, nearby 
points in the embedding remain close when mapped back into the state space. By contrast bad partitions 
induce topological degeneracies where symbolic words map back to globally distinct regions of state 
space. The nearest neighbor, in Euclidean distance, to each point in the embedding is found. Knowing 
symbolic neighbors, we find distances of those same points back in state space. Better partitions give a 
smaller proportion of symbolic false nearest neighbors. For concrete numerical calculations, the partitions 
are parameterized with a relatively small number of free parameters by defining the partitions with 
respect to a set of radial-basis "influence" functions. The statistic s for symbolic false nearest neighbors is 
minimized over the free parameters using "differential evolution", a genetic algorithm suitable for 
continuous parameter spaces. 
 

The second approach used, we will hereby call the wavelet space (WS) method is a new approach that 
we have introduced and that uses wavelet transform to convert the time series data to time-frequency data 
for generating the symbol sequence. The graphs of wavelet coefficients versus scale at selected time shifts 
are stacked starting with the smallest value of scale and ending with its largest value and then back from 
the largest value to the smallest value of the scale at the next instant of time shift. The resulting scale 
series data in the wavelet space is analogous to the time series data in the phase space. Then, the wavelet 
space is partitioned into segments of coefficients on the ordinate separated by horizontal lines. The 
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number of segments in a partition is equal to the size of the alphabet and each partition is associated with 
a symbol in the alphabet. 

 
Having defined a partition, the time series or scale series data is converted to a symbol sequence that, 

in turn, is used for construction of a finite state machine using the tools of Computational Mechanics. 
Two alternative techniques of finite-state machine construction are: (i) the e-machine construction; and 
(ii) a new technique based on Dth order Markov chains, called the D-Markov machine, for identifying 
patterns based on time series analysis of the observed data. Both techniques rely on information-theoretic 
principles and are based on Computational Mechanics. The anomaly detection methodology implemented 
in this research utilizes the D-Markov machine for finite-state machine construction. 
 
3.2.2 The Suboptimal D-Markov Machine  
 

This section describes the implemented technique for representing the pattern in a symbolic process, 
which is motivated from the perspective of anomaly detection. The core assumption here is that the 
symbolic process can be represented to a desired level of accuracy as a Dth order Markov chain, by 

appropriately choosing ND∈ . A stochastic symbolic stationary process ..., 21012 sssss...S −−≡ , is 
called Dth order Markov Process if the probability of the next symbol depends only on the previous D 
symbols, i.e. the following condition holds:  
 

)...|(...)|( 121 Diiiiii sssPsssP −−−− =       (3.3) 
 

For a given ND∈ and neglecting the transient states, we define the following effective states of the 
symbolic process: 
 

}:{ DDD AssQ ∈=         (3.4) 
 

The random vector for the above set of states is denoted by Q and the ith state as qi. Given an initial 
state and the next symbol from the original process, only certain successor states are possible. This is 
represented as the allowed transitions between the states and the probabilities of these transitions as: 
 

)|,(
1

)(
ij

s
ij qQqQsSPT ==′==

→

       (3.5) 
 

for all Qqq ji ∈, . Note that 0)( =s
ijT  for Di sssq ...21= and s Dj sssq ′′′= ...21 such that 

DD sssss ′′≠ ...... 132 . Thus, the stochastic matrix T is a branded matrix with at most || 1+DA  nonzero 
entries. 
 

The construction of a D-Markov machine is fairly straightforward. On a given symbol sequence, a 
window of length D+1 is slided by keeping a count of the frequency of occurrence of sequences 

11... +DDsss and Dss ...1 which are respectively denoted by )...( 11 +DDsssN and  )...( 1 DssN . Note 

that if 0)...( 1 =DssN then the state Qssq D ∈= ...1 does not exist. The transitions probabilities are then 

obtained by these frequency counts as follows, (for  0)...( 1 ≠DssN   ): 
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ssP

sssPT ==         (3.6) 

 

where, Di ssq ...1=  and sssq Dj ...2= . 
 

 
 

Figure 3.2 State  Machine with D=2, and |A|=2 
 

As an example, Figure 3.2 shows construction of the finite state machine and the associated state 
transition matrix for a D-Markov process, where the alphabet size 2|| =A and the states are chosen as 

words of length D=2 from the symbol sequence. Therefore, the total number of states is 4|| =DA , which 
is the number of permutations of the alphabet symbols within a word of length D. The states are joined by 
edges labeled by a symbol in the alphabet. The state machine moves from one state to another upon 
occurrence of an event as a new symbol in the symbol sequence is received. The machine language is 
complete in the sense that there are different outgoing edges marked by different symbols; however, it  is 
possible that the some of these arcs may have zero probability. 
 

In general, the effects of an anomaly are reflected in the respective state transition matrices. Thus, the 
structure of the finite state machine is fixed for a given alphabet size and window length D.  Furthermore, 
the number of edges is also finite because of the finite alphabet size. The elements of the state transition 
matrix (that is a stochastic matrix) are identified from the symbol sequence. 
 
3.2.3 Anomaly Measure and Detection  
 

The machines described above recognize patterns in the behavior of a dynamical system that 
undergoes anomalous behavior. In order to quantify changes in the patterns that are representations of 
evolving anomalies, we induce an anomaly measure on these machines denoted by M. The anomaly 
measure M can be constructed based on the following information-theoretic quantities: entropy rate, 
excess entropy, and complexity measure of a symbol string S. 

• The entropy rate )(Shµ quantifies the intrinsic randomness in the observed dynamical process. 
• The excess entropy E(S) quantifies the memory in the observed process. 

• The statistical complexity )(SCµ of the state machine captures the average memory 
requirements for modeling the complex behavior of a process. 

 
Given two symbol strings S and S0 it is possible to obtain a measure of anomaly by adopting any one 

of the following three alternatives: 
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      (3.7)   

 
Note that each of the anomaly measures, defined above, is a pseudo metric. For example, let us 

consider two periodic processes with unequal periods, represented by S and S0. For both processes 

0=µh , so that 0),( 0 =SSM for the first of the above three options, even if 0SS ≠ . 
 

The above measures are obtained through scalar-valued functions defined on a state machine and do 
not exploit the rich algebraic structure represented in the state machine. For example, the connection 
matrix T associated with the e-machine can be treated as a vector representation of any possible anomalies 
in the dynamical system. The induced 2-norm of the difference between the T-matrices for the two state 

machines can be used as a measure of anomaly, i.e. 200),( TTSSM −= . Such a measure was found 
to be effective. However, there is some subtlety in using this measure on e-machines, because e-machines 
do not guarantee that the machines formulated from the symbol sequences S and S0 have the same 

number of states; and these states do not necessarily have similar physical significance. In general, T and 

0T  may have different dimensions and different physical significance. However, by encoding the causal 

states, T could be embedded in a larger matrix, and an induced norm of the difference between T  
matrices for these two machines can be defined. Alternatively, a (vector) measure of anomaly can be 

derived directly from the stochastic matrix T  as the left eigenvector p corresponding to the unit 

eigenvalue of T , which is the state probability vector under a stationary condition. 
  

In the case of D-Markov machines, which have a fixed state structure, the state probability vector p 
associated with the state machine have been used for a vector representation of anomalies, leading to the 

anomaly measure ),( 0SSM as a distance function between the respective probability vectors p and p0  
(that are of identical dimensions), or any other appropriate functional. 
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3.3   The BWR Reference Model  
 

The US NRC coupled code TRACE/PARCS is used to generate the time series data. The reference 
BWR model for this study is based on the Peach Bottom 2 (PB2), for which the TRACE/PARCS models 
have been validated in the framework of the OECD/NRC BWR TT Benchmark5. The plant nodalisation 
scheme, which served to develop the system input deck of TRACE, is given in Figure 3.3. 
 

The TRACE-inputs decks have been specifically designed to conduct this study. In particular, the 
control system (Figure 3.4) was provided with capability for different system perturbations. Point kinetics 
model and three-dimensional kinetics PARCS model were developed to perform either TRACE stand-
alone (with point kinetics model) or coupled TRACE/PARCS steady-state and transient simulations. 
 

 
 

Figure 3.3 PB2 Plant Nodalization 
 
 

The control system serves a dual purpose: first, it is set up to adjust the plant’s relevant parameters to 
their rated conditions set-points, as reported in Table 3.1; secondly, the control system provides capability 
for system perturbation. A schematic of the control system is in Figure 3.4. 
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Figure 3.4 Control System Schematic  
 
 
 
 
 

Table 3.1 BWR Full Power Steady-State Conditions 
 

Thermal Power [MW] 3293 
Feedwater / Steam Mass Flow rate [kg/s] 1685 
Core Mass Flow rate [kg/s] 12915 
System Pressure [MPa] 7.03 
Downcomer Water Level [m] 11.2 
Core Inlet Subcooling [K] 13 
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3.4. Selection of Appropriate Input Stimuli 
 
 In order to facilitate early detection of small changes in the BWR system parameters that may 
eventually lead to instabilities, it is proposed to excite the system with opportune a priori known stimuli 
and discover anomaly patterns, if any, from the resulting responses. The study considers BWR system 
operations in which anomalies do occur at a slow time-scale while the inferences are made based on the 
observation of the fast time–scale system dynamics. The algorithm of anomaly detection relies on this 
dual-time scale analysis of the asymptotic response of the dynamical system. 
 
 The selection of the set of stimuli to be applied to the system is a critical step for the proposed 
methodology. The selected perturbation must not interfere with the normal operation of the plant (or, in 
this case, with the numerical simulation of the plant). In particular, unstable or excessive oscillations must 
not occur as a consequence of the input perturbations and the plant must return to the original state after 
the perturbation is terminated. On the other hand, the stimulus imposed to the system has to be ample 
enough in order for the analyst to infer the stability characteristic of the plant. These observations are 
especially true for externally applied small perturbations. Four possible types of perturbation have been 
identified (Table 3.2) for a BWR steady-state operation and applied to PB2: 
 

A. System Pressure perturbation by acting on the Turbine Control Valve (TCV). 
 
B. Core Flow perturbation by acting on the Recirculation Pumps. 

 
C. Sub-cooling perturbation by acting on the Feedwater Pre-heaters 
 
D. Changes in Control Reactivity by Control Rods movement 

 
Among the four possible choices, the System Pressure perturbation seems to be the most viable and 

secure, whereas for the same reasons the use of the control rods movement seem to be the most 
impractical and are not hence investigated further.  
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Table 3.2 Appropriate Input Stimuli.  
 

 
The control blocks are able to simulate for each of the selected input stimuli, the following three 

perturbations shapes (Figure 3.5): 1) continuous sinusoidal shape, 2) fragmented sinusoidal shape and 3) 
square shape. 
 

 
 

Figure 3.5 Types of Perturbation that Can be Simulated. 

ID STIMULUS EXCITATION CHARACTERISTICS 

f = 0.4 ÷ 0.6 Hz A.1 Pressure perturbation by TCV  K·sin (2·p·f·t) 
(Continuos) K= 0.02 ÷ 0.04 MPa 

f = 0.4 ÷ 0.6 Hz 
K= 0.02 ÷ 0.04 MPa 

A.2 Pressure perturbation by TCV  K·sin (2·p·f·t)  
(Time Intervals) 

Time Intervals 
?t1= 0.2 ÷ 10 sec 
?t2= 0 ÷ 20 sec 
K= 0.02 ÷ 0.04 MPa A.3 Pressure perturbation by TCV Square wave (K, ?t1, ?t2) 
?t1= 0.2 ÷ 10 sec 
?t2= 0 ÷ 20 sec 
f = 0.4 ÷ 0.6 Hz B.1 Core flow perturbation by 

Recirculation Pump 
K·sin (2·p·f·t) 
(Continuos) K= 0.05% ÷ 0.1% 

f = 0.4 ÷ 0.6 Hz 
K= 0.05% ÷ 0.1% 

B.2 Core flow perturbation by 
Recirculation Pump  

K·sin (2·p·f·t) 
(Time intervals) 

Time Intervals 
?t1= 0.2 ÷ 10 sec 
?t2= 0 ÷ 20 sec 
K= 0.05% ÷ 0.1% B.3 Core flow perturbation by 

Recirculation Pump 
Square wave (K, ?t1, ?t2) 

?t1= 0.2 ÷ 10 sec 
? t2= 0 ÷ 20 sec 
f = 0.4 ÷ 0.6 Hz C.1 Sub-cooling perturbation by 

Feedwater Pre-heaters 
K·sin (2·p·f·t) 
(Continuos) K= 0.05% ÷ 0.1% 

2·p·f = 0.4 ÷ 0.6 Hz 
K= 0.05% ÷ 0.1% 

C.2 Sub-cooling perturbation by 
Feedwater Pre-heaters 

K·sin (2·p·f·t) 
(Time intervals) 

Time Intervals 
?t1= 0.2 ÷ 10 sec 
?t2= 0 ÷ 20 sec 
K= 0.05% ÷ 0.1% C.3 Sub-cooling perturbation by 

Feedwater Pre-heaters 
Square wave (K, ?t1, ?t2) 

?t1= 0.2 ÷ 10 sec 
?t2= 0 ÷ 20 sec 
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Between all these types of stimuli perturbation, the pressure perturbation by acting on the Turbine 

Control Valve was identified to be the most viable. Linear frequency-domain analyses and operational 
experience confirm that the typical natural frequency of BWR instability events is about 0.5 Hz. For those 
reasons, the value of 0.5 Hz is initially chosen for the frequency of system pressure perturbations together 
with amplitude of 0.02 MPa. Figure 3.6 shows the pressure perturbation applied to the BWR model 
beginning from a time of 2000 seconds.  
 

 
 

Figure 3.6 System Pressure Perturbation 
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3.5 Identification of Appropriate Perturbed Parameters  
 

Another critical step of the methodology is the selection of suitable perturbed (possibly slowly) 
parameters. The followed approach consists in taking into account a combination of the most sensitive 
stability variables.  
 

Table 3.3 The Most Sensitive Stability Parameters. 
 

PARAMETERS EFFECT ON 
STABILITY 

Fuel Assembly Parameters   
Flow Area + 
Hydraulic Diameter + 
Loss Coefficient at Lower Tie Plate + 
Loss Coefficient at Upper Tie Plate - 
Loss Coefficient Spacer - 
Fuel Time Constant + 
Void Coefficient + 

Operating Parameters   
Reactor Power Level + 
Reactor Mass Flow + 
Axial Peaking Factor - 
Radial Peaking Factor - 
Inlet Sub-cooling -/+ 

 
Based on the parameters in Table  3.3 an on their relevance to the BWR stability, the following no-

dimensional groups of parameters have been used in the anomaly detection methodology: 
 

 

1) 
m

mf

A

tt

M
P ⋅

⋅=1β  

 
 P = Power (W) 
 M = Core Mass Flow (Kg/s) 
 tf = Fuel Time Constant (s) 
 tm = Moderator Time Constant (s) 
 Am = Average Core Flow Area (m2) 
 

• =⋅ ftP Energy produced in the fuel (J) during the time span tf in which a change DTf of the 
fuel temperature occurs. 

 

• 
m

m

t
AM ⋅

= Energy removed by the coolant during the time span tm in which a change DTm of 

the coolant temperature occurs. 
2)  

 αρβ α ⋅=2  
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 =αρ Reactivity Void Coefficient (1/%void) 
 α   = Average Core Void (%void) 
 

• Insertion of void reactivity 
 
 

3) 
TT ⋅

⋅
=

ρ
αρ

β α
3  

 
 
 =Tρ Reactivity Temperature Coefficient (1/T) 
 T   = Average Core Temperature (T) 
 

• αρα ⋅  = Insertion of reactivity from Void Effect 

• TT ⋅ρ  = Insertion of reactivity from Doppler Effect 
• Importance of the reactivity effects 

 
 

4) 
p

pavg

∆
=4β  

 
 
 pavg  = Core Average Pressure 
 Dp   = Core Pressure Drop 
 

• Effect of pressure drops. 
 

5) satsat
l

sat
l

llg

l

hh

hh

−

−
=5β  

 

l
h  = Inlet Liquid Enthalpy 

 sat
lh  = Liquid Enthalpy at Tsat 

 
sat
gh  = Vapour Enthalpy at Tsat 

 
• Effect of subcooling degree. 

 
 
 

6) NPCH
hhM

P
sat
l

sat
g

sat
g

sat
g

sat
l =

−
⋅

−
⋅=

1
6 ρ

ρρ
β  
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 NPCH = Phase Changing Number 

sat
lρ = Liquid Density at Tsat 

 
sat
gρ = Vapour Density at Tsat 

 
 

7) NSUB
hh

hh
sat
g

sat
g

sat
l

satsat
l

sat
l

llg

l =
−

⋅
−

−
=

ρ
ρρ

β7  

 
 

NSUB = Subcooling Number 
 
 

8) 
f

m

Tf

m

t
t

Tt
t

⋅
⋅
⋅

=⋅=
ρ

αρ
ββ α

38  

 
 

• Importance of the reactivity effects taking into account the different time constants. 
 
 
 

9) 
TA

tt
M
P

Tm

mf

⋅
⋅

⋅
⋅

⋅=⋅=
ρ

αρ
βββ α

319  

 

 
In particular parameters ß1, ß3, ß4 and ß6 were identified to be more viable to detect difference in the 

asymptotic behavior by slow and small changes in their values (see the following Sections).  
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3.6 Generation of Time  Series Data 
 

The US NRC thermal-hydraulic system code TRACE (TRAC RELAP Advanced Computation 
Engine) coupled with the 3-D neutronics simulator PARCS is used to simulate the Peach Bottom 2 NPP.  
Initially the point kinetics model, implemented in TRACE, is used to simulate the thermal-
hydraulics/neutron kinetics feedbacks. This model is sufficient to predict the in-phase instabilities. 
However, the 3-D kinetics model (PARCS) has already been developed and applied in order to: 
 

1) predict the out-of phase instabilities, and 
 

2) refine the model to predict the in-phase instability 
 

Tree different scenarios, based on the different dependence of the reactivity void coefficient on the 
core average exposure, were simulated (Figure 3.7): 
 

a. BOL: Beginning of Life or Beginning of Cycle (BOC); 
 

b. EOL: End of Life or End of Cycle (EOC) 
 

c. CC1: Conservative Case 1 (more insertion of reactivity due to the void feedback effect) 
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Figure 3.7 Void Reactivity Coefficients as a Function of the Average Core Void 
 

For each scenario, a set of simulations have been performed starting from the rated condition (100% 
Power, 100% Mass Flow Rate) and moving along the Operational Map of the PB NPP (Figure 3.8 and 
Table 3.4). For each of these calculations, sensitivity studies have been performed changing some 
parameters in Table 3.3 (Inlet Sub-cooling, Loss Coefficient at Lower Tie Plate, etc). Results of the 
simulations have been used to calculate the beta parameters for the anomaly curves (see Section 3.7).  
 

After 2000 seconds of “null” transient simulation, the pressure perturbations, described in Section 3.4 
are applied for 500 seconds. The identification of small changes in the behavior of nonlinear dynamics 
systems requires the selection of appropriate time series data. The following ones have been taken into 
considerations: 
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a. Core Mass Flow In, Core Mass Flow Out; 

 
b. Reactor Power; 

 
c. Void Reactivity Feedback, Doppler Reactivity Feedback; 

 
d. Cladding Rod Temperature; 

 
e. Feed Water Flow Rate, Steam Line Flow rate; 

 
f. Feed Water Temperature, Core Inlet Temperature, Subcooling Degree; 

 
g. RPV Downcomer Level; 

 
h. Steam Dome Pressure; 

 
i. NSUB and NPCH 

 
 

 
Figure 3.8 PB2 Operational Map. 

 
 

 
 
 
 
 
 
 

Area of 
 

Investigation 
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Table 3.4 List of calculations obtained by varying power (P) and Mass Flow Rate (M) 
 

Nominal Power (100%) = 3293000 W 
Nominal Core Flow (100%) = 12915 Kg/s 

 
P = 50 + (50/65)*(M-35) 

 

No M (%) P (%) P(%)/M(%) M (Kg/s) P (kW) P/M (kJ/Kg) 

1 100.0 100.00 1.000 12915 3293000 254.97 
2 99.5 99.62 1.001 12865.33 3280335 255.27 
3 99.0 99.23 1.002 12815.65 3267669 255.57 
4 98.5 98.85 1.004 12765.98 3255004 255.87 
5 98.0 98.46 1.005 12716.31 3242338 256.18 
6 97.5 98.08 1.006 12666.63 3229673 256.48 
7 97.0 97.69 1.007 12616.96 3217008 256.79 
8 96.5 97.31 1.008 12567.29 3204342 257.11 
9 96.0 96.92 1.010 12517.62 3191677 257.43 

10 95.5 96.54 1.011 12467.94 3179012 257.75 
11 95.0 96.15 1.012 12418.27 3166346 258.07 
12 94.5 95.77 1.013 12368.6 3153681 258.40 
13 94.0 95.38 1.015 12318.92 3141015 258.73 
14 93.5 95.00 1.016 12269.25 3128350 259.07 
15 93.0 94.62 1.017 12219.58 3115685 259.40 
16 92.5 94.23 1.019 12169.9 3103019 259.75 
17 92.0 93.85 1.020 12120.23 3090354 260.09 
18 91.5 93.46 1.021 12070.56 3077688 260.44 
19 91.0 93.08 1.023 12020.88 3065023 260.79 
20 90.5 92.69 1.024 11971.21 3052358 261.15 
21 90.00 92.31 1.026 11623.5 3039692 261.51 
 

In particular Core Mass Flow Out, NPCH, Power and Steam Dome Pressure  have been 
investigated in depth. Figures 3.9, 3.10, 3.11 and 3.12 show respectively the above mentioned time series 
data for the BOL scenario during the selected pressure perturbation transients starting (after 2000 s) from 
some of the considered conditions above in Table 3.4. 
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Figure 3.9 Mass flow out time trend during the pressure perturbation transient for BOL scenario and 
different steady state conditions. 

 

 
Figure 3.10 NPCH time trend during the pressure perturbation transient for BOL scenario and different 

steady state conditions. 
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Figure 3.11 Mass flow out time trend during the pressure perturbation transient for BOL scenario and 
different steady state conditions. 

 

 
 
Figure 3.12 Steam Dome Pressure time trend during the pressure perturbation transient for BOL scenario 

and different steady state conditions. 
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3.7 Results from the Application of Early Anomaly Detection of BWR Instabilities 
 

The combination of Symbolic Dynamics and Formal Languages provides a tool for identification of 
small changes in the behavior of nonlinear dynamical systems. The transition from the continuous to a 
discrete symbolic description is accomplished by choosing a suitable Poincare section for the time 
discretization. The resulting phase-space of the dynamical system is partitioned into a number of cells to 
generate a “coordinate grid”. Each cell is labeled with a symbol and the set of all such symbols constitutes 
the “alphabet” of the symbolic dynamics. Such a mapping attributes a legal (physically admissible) 
symbol sequence to the system dynamics starting from the initial state, as the dynamic trajectory in the 
phase-space is represented by legal strings of symbols (symbolic language). The phase-space plots 
reported in Figures 3.13, 3.14, and 3.15 constitute examples of the graphs used to generate the symbol 
sequences. They refer to the BOL scenario with different conditions ranging from 100% of mass flow rate 
and power to 90% of mass flow and 92.31% of power. In particular, it is possible to note the change of 
the orbit’s shapes for the following 2-dimensional phase space: 
 

a. Mass Flow In versus Mass Flow Out; 
 

b. Core Power versus NPCH; 
 

c. Power versus Mass Flow In. 
 

The construction procedure for e machines is based upon the translation of the string of symbols into 
a parse tree. A probabilistic structure is then added to each tree node in such a way that the transition 
probabilities between different system states (upon occurrence of each symbol of the alphabet) can be 
determined and represented by a (stochastic) connection matrix T, which is denoted as a vector 
representing any possible anomaly in the dynamical system. An appropriate norm of the difference 
between the matrices T under nominal and anomalous conditions is used in the investigation as a measure 
of anomaly.  
 

Figures 3.16 through 3.19 show the results obtained by the application of the early anomaly detection 
of BWR instabilities respectively for BOL and EOL. Similar results have been obtained for the 
conservative case CC1. For each scenario, two time series data have been considered (Mass Flow Out and 
NPCH) and for each of them four different beta parameters have been adopted. The behavior is 
substantially the same for all graphs and three different regions can be identified:  
 

1) a first zone where the anomaly curves increases quite rapidly outlining the features of early 
anomaly detection methodology; 

 
2) a plateau region that corresponds to the ‘critical’ combination of parameters; 

 
3) a third zone where the anomaly curves restarts to increases, identifying the possible incoming 

BWR instabilities.  
 

For example in the anomaly curve for the case of BOL in which the Mass Flow Out time series data 
was analyzed using the proposed anomaly detection methodology to detect growth of anomaly as 
parameter ß1 increases, one can see a rapid rise in anomaly measure from the nominal ß1 value. This 
indicates that the technique is successful in detecting early growth in anomaly. The anomaly curve starts 
to level on at ß1 = 2.65 x 105 and starts to slightly increase again at a ß1 value of approximately 2.88 x 105, 
which might indicate incoming BWR instabilities.  
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Each anomaly curves is bounded with uncertainty bands with a confidence level of 98%. The 
uncertainty bands are created from calculating the prediction bounds. The prediction bounds can be 
calculated for a new observation or for the fitted function. In creating our uncertainty bands, we 
calculated prediction bounds for the fitted function. Additionally, the bounds can be simultaneous and 
measure the confidence for all predictor values or non-simultaneous and measure the confidence only for 
a single predetermined predictor value. A simultaneous bound was used with a confidence level of 0.98, 
which indicates a 98% level of certainty that all predictor values are contained within the lower and upper 
prediction bounds. 
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Figure 3.13 Mass Flow In versus Mass Flow Out phase space description: pressure perturbation transient 
for BOL scenario and different steady state conditions. 
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Figure 3.14 NPCH versus Power phase space description: pressure perturbation transient for BOL 

scenario and different steady state conditions. 
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Figure 3.15 Power versus Mass Flow In phase space description: pressure perturbation transient for BOL 
scenario and different steady state conditions. 
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Figure 3.16 Anomaly curves and uncertainty bands. Scenario: BOL – 
Time Series Data: Mass Flow Out – Parameters: ß1, ß2, ß3 and ß4. 
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Figure 3.17 Anomaly curves and uncertainty bands. Scenario: BOL – 
Time Series Data: NPCH – Parameters: ß1, ß2, ß3 and ß4. 
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Figure 3.18 Anomaly curves and uncertainty bands. Scenario: EOL – 
Time Series Data: Mass Flow Out – Parameters: ß1, ß2, ß3 and ß4.
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Figure 3.19 Anomaly curves and uncertainty bands. Scenario: EOL – 

Time Series Data: NPCH – Parameters: ß1, ß2, ß3 and ß4. 
 
 

3.9 Demonstration of the  Capability to Detect BWR Instabilities 
 

It is well known that the BWR operation at rated conditions is always in the stable region, 
whereas instability events may occur at low flow and relatively high power operation (Figure 
3.20). 
 

 
 

Figure 3.20 BWR Operational Map. 
 

Taking example from the instability accident that occurred at the LaSalle BWR, a series of 
TRACE simulation of a double recirculation pump trip transient originating at different ‘steady 
state’ conditions is executed to determine whether or not instabilities will occur during operation 
in natural circulation following the pumps trip. 
 

This discussion is intended as a demonstration of the capability of the methodology to predict 
the BWR instabilities. A more sophisticated qualification process for the proposed methodology 
is under way and it will constitute one of the main goals to be achieved during the second year of 
the project. 
 
 The analysis presented in this report is focused only on the BOL scenario. Similar results 
have been obtained for EOL and CC1 scenarios. The base-case simulation (100% of Power and 
100% of Mass Flow Rate) shows that the natural circulation mode is stable (Figure 3.21). The re-
circulation pump trip occurs at 2000 seconds into the simulation. Subsequent sensitivity 
calculations show, as expected, that the reactor operation moves towards an unstable behaviour 
when the insertion of reactivity due to the void feedback increases. In correspondence of 68% of 
Mass Flow Rate and 75% of Power the first insurgence of instabilities occurs (Figure 3.22). The 
average core void is 48% and the ß3 parameter has a value of about 3.2. Figure 3.23 shows that in 
correspondence of this value of ß3 the anomaly measure is 0.78 (the time series data taken into 
consideration is the Mass Flow Out) and this point is situated in the third zone of the anomaly 
curves after the plateau region, i.e. where the anomaly methodology identifies the possible 
presence of BWR instabilities. 
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In this research, a new methodology for early detection of BWR instabilities has been 

developed and an initial demonstration of the capability of the methodology to predict the 
BWR instabilities has been done. A more sophisticated qualification process for the 
proposed methodology is under way and it will constitute one of the main goals to be 
achieved during the second year of the NEER project. 
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a - Core Flow In 

 

 
 

b - Reactor Power 
 

 
 

c - Reactivity Components  
 

Figure 3.21 Recirculation Pump Trip: Base-Case. 
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a - Core Flow In 

 

 
 

b - Reactor Power 
 

 
 

c - Reactivity Components  
Figure 3.22 Recirculation Pump Trip: Instability Insurgence for 68% of Mass and 75% of Power 
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Figure 3.23 Demonstration of the Capability to Detect BWR Instabilities. 
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4 Project Schedule and Management 
 

The work during the 1st year of the project was performed by Professor Ivanov (as lead 
principal investigator – PI) and assisted by one Ph.D. student from the Nuclear Engineering 
Program. The methodology be ing developed in the framework of the project serves as the PhD 
dissertation topic of this student. Two other faculty form the MNE Department at PSU, which are 
members of his PhD Committee, participated actively in this project as non-paid collaborators 
and advisers. Professor A. Ray is bringing to the project his expertise in system dynamics and 
artificial intelligence and Professor F. B. Cheung is bringing to the project his expertise in 
thermal-hydraulics and nuclear safety. The outlined below four Tasks for the Phase 1 of Year 1 of 
the project are completed. 

 
1) Phase 1 - Year 1: 
 
Task 1 – 3 months  (Completed) 
Identif ication of the appropriate stimuli class for BWR-type of instabilities for both simulation 
models using the coupled simulation tools  
 
Task 2 – 3 months  (Completed) 
Development of solution procedure for generating time-series data from the models developed 
under both normal and selected anomaly conditions 
 
Task 3 – 3 months (Completed)  
Development of a procedure for conversion from continuous dynamics of time series data to 
symbolic dynamics. 
 
Task 4 – 3 months  (Completed) 
Construction of a vector space of formal languages and a metric to serve as a distance function. 
 

The performed work during the first year is summarized in this report and presented to DOE. 
Two publications are completed based on the accomplished work during the 1st year of the project 
– one on the concept of the methodlogy3 and the other on the development of the methdology6. A 
journal paper summarizing the work done during the first year of this project is being finalized 
and it will be sent to Annals of Nuclear Energy for publication.  

According to the project schedule the following fours tasks will be performed during he 2nd 
year of the project.  
 
2) Phase 2 – Year 2: 

 
Task 5 – 2 months  
Formulation of a forward functional relationship of the anomalies to the measured distances 
between symbolic languages under each of the exogenous stimuli 
 
Task 6 – 2 months  
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Verification of the forward methodology using the simulation models and tools 
 
Task 7 – 3 months  
Applications of the Forward Problem Formulation to BWR Instabilities Analyses 
 
Task 8 – 5 Months  
Feasibility study on identification of a set of potential anomalies as an intersection of the 
inverse images of the measured distances between symbolic languages under the forward 
functional relationship for each of the exogenous stimuli 
 

The performed work during the second year will be summarized in a report and presented to 
DOE. The performed work on the whole project will be summarized in a final report and 
presented to DOE. A conference and/or journal paper will be prepared describing the developed 
methodology and obtained results. 
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